Three-Dimensional Architecture of the L-Type Calcium Channel: Structural Insights into the CaVα2δ1 Auxiliary Protein
نویسندگان
چکیده
L-type calcium channels (LTCC) are responsible for Ca2+ influx into muscle and neurons. These macromolecular complexes minimally comprise the main poreforming CaVα1 and auxiliary subunits CaVβ and CaVα2δ1. The ultrastructure of the oligomeric LTCC complexes from heart and skeletal muscle has been reported previously at ≈ 20 Å, a resolution that prevent identification of structural domains. Recent improvements in cryo-electronic microscopy (EM) methods made it possible to obtain a three-dimensional structure of the rabbit skeletal muscle LTCC CaV1.1 complex at a resolution of 4.2 Å and recently at 3.6 Å. This technique requires only nanograms of purified proteins and circumvents crystallization as a means for structure determination. The high resolution cryo-EM structure shows the molecular architecture of the subunits comprising the oligomeric complex and for the first time, a high-resolution glance of the largely extracellular CaVα2δ1 protein with its extracellular domains (Cache1, VWA, and Cache2). Although the CaVα2δ1 protein is a single-pass transmembrane protein, the complex topology of its extracellular domain represents a technical challenge for structure determination using conventional purification approaches. Herein we show the merits of a strategy based upon the purification of small structural domains that can be elucidated individually before these domains are reassembled into the quaternary structure. A structural model was derived using ab initio structure prediction constrained by small angle X-ray scattering profile of the refolded Cache2 domain. The excellent agreement between the predicted structure and the available cryo-EM structure suggests a novel and rapid procedure to discover structural information of protein domains.
منابع مشابه
Negatively charged residues in the first extracellular loop of the L-type CaV1.2 channel anchor the interaction with the CaVα2δ1 auxiliary subunit
Voltage-gated L-type CaV1.2 channels in cardiomyocytes exist as heteromeric complexes. Co-expression of CaVα2δ1 with CaVβ/CaVα1 proteins reconstitutes the functional properties of native L-type currents, but the interacting domains at the CaV1.2/CaVα2δ1 interface are unknown. Here, a homology-based model of CaV1.2 identified protein interfaces between the extracellular domain of CaVα2δ1 and the...
متن کاملQuantitative Structure-Activity Relationship Studies of 4-Imidazolyl- 1,4-dihydropyridines as Calcium Channel Blockers
Objective(s): The structure- activity relationship of a series of 36 molecules, showing L-type calcium channel blocking was studied using a QSAR (quantitative structure–activity relationship) method. Materials and Methods: Structures were optimized by the semi-empirical AM1 quantum-chemical method which was also used to find structure-calcium channel blocking activity trends. Several types of ...
متن کاملInteraction between cannabinoid receptors and inhibition of L-type calcium channel on passive avoidance learning and memory in male rats
Introduction: There is currently a debate over the interaction between Ca2+ channels and cannabinoid system on learning and memory processing. In this study, we examined the effect of acute injection of cannabinoid agonist (Win- 55212-2) (Win) or antagonist (AM251), following chronic injection of verapamil, as a L-type Ca2+ channels blocker, on passive avoidance (PA) test in male Wistar rats...
متن کاملEffects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes
The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...
متن کاملEffects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes
The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016